Click Here for 150+ Global Oil Prices
Start Trading CFDs Over 2,200 Different Instruments
Click Here for 150+ Global Oil Prices
Click Here for 150+ Global Oil Prices
Start Trading CFDs Over 2,200 Different Instruments
Click Here for 150+ Global Oil Prices
Click Here for 150+ Global Oil Prices
Start Trading CFDs Over 2,200 Different Instruments
Click Here for 150+ Global Oil Prices
Click Here for 150+ Global Oil Prices
Start Trading CFDs Over 2,200 Different Instruments
Click Here for 150+ Global Oil Prices
Drought Forces British Columbia To Suspend Water Permits For Oil Firms
A new Iran nuclear deal…
A short-term battle appears to…
China is buying an ever-increasing…
Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…
Scientists from the U.S. Department of Energy’s Ames National Laboratory and Oak Ridge National Laboratory conducted an in-depth investigation of the Kagome layered topological material TbMn6Sn6 to understand it and its magnetic characteristics better. These results could impact future technological advancements in quantum computing, magnetic storage media, and high-precision sensors.
The research is discussed in the paper “Low-temperature competing magnetic energy scales in the topological ferrimagnet TbMn6Sn6,” published in Physical Review X. Kagomes are a type of material whose structure is named after a traditional Japanese basket weaving technique. The weave produces a pattern of hexagons surrounded by triangles and vice-versa. The arrangement of the atoms in Kagome metals reproduces the weaving pattern. This characteristic causes electrons within the material to behave in unique ways.
Solid materials have electronic properties controlled by their electronic band structure characteristics. The band structure is strongly dependent on the geometry of the atomic lattice, and sometimes bands may display special shapes such as cones. These special shapes, called topological features, are responsible for the unique ways electrons behave in these materials. The Kagome structure in particular leads to complex and potentially tunable features in the electronic bands.
Using magnetic atoms to construct the lattice of these materials, such as Mn in TbMn6Sn6, can further help inducing topological features. Rob McQueeney, a scientist at Ames Lab and the project leader, explained that topological materials “have a special property where under the influence of magnetism, you can get currents which flow on the edge of the material, which are dissipationless, which means that the electrons don’t scatter, and they don’t dissipate energy.”
The team set out to better understand the magnetism in TbMn6Sn6 and used calculations and neutron scattering data collected from the Oak Ridge Spallation Neutron Source to conduct their analysis. Simon Riberolles, a postdoc research associate at Ames Lab and project team member, explained the experimental technique the team used. The technique involves a beam of neutron particles which is used to test how rigid the magnetic order is. “The nature and strength of the different magnetic interactions present in the materials can all be mapped out using this technique,” he said.
They discovered that TbMn6Sn6 has competing interactions between the layers, or what is called frustrated magnetism. “So the system has to make a compromise,” McQueeney said, “Usually what that means is that if you poke at it, you can get it to do different things. But what we found out in this material is that even though those competing interactions are there, there are other interactions that are dominant.”
This is the first detailed investigation of the magnetic properties of TbMn6Sn6 to be published. “In research, it’s always exciting when you figure out you understand something new, or you measure something that has not been seen before, or was understood partially or in a different manner,” Riberolles said.
Related: Is The Russian Oil Price Cap Worth It?
McQueeney and Riberolles explained that their findings suggest the material could potentially be adjusted for specific magnetic characteristics, for example by changing the Tb for a different rare earth element, which would change the magnetism of the compound. This fundamental research paves the way for continued advances in Kagome metals discovery.
This is just step one, accomplished. What this research will lead to is likely to apply to a longer list than what is noted above. Electromagnets and electrical windings or wire run round and round something are to create a magnetic field. The basic problem is those wires are long and experience “line loss” as heat. The research has a specialty list, but there are huge numbers of magnets already in use and millions more made every year.
Those magnets make motors go and transformers deliver power to homes and businesses among with an immense list of other applications.
This is important work in energy savings and making more power available for less electrical expense. Let's hope this team’s work accelerates and offers ever more and soon, scaleable results.
By Brian Westenhaus via New Energy and Fuel
More Top Reads From Oilprice.com:
Oil Rig Count Slides In Tough Week For Crude
EU Ministers Call For 10% Cut In Energy Consumption
Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…
“Lehman Event” Looms For Europe As Energy Companies Face $1.5T In Margin Calls
Can OPEC+ Keep Oil Prices Above $90?
Europe’s Reaction To The Energy Crisis Is Turning Into A ‘Ponzi Scheme’
Russia Is Now Producing LNG Near The Shuttered Nord Stream Pipeline
Will OPEC Cut Oil Output On Labor Day?
The materials provided on this Web site are for informational and educational purposes only and are not intended to provide tax, legal, or investment advice.
Nothing contained on the Web site shall be considered a recommendation, solicitation, or offer to buy or sell a security to any person in any jurisdiction.
Trading and investing carries a high risk of losing money rapidly due to leverage. Individuals should consider whether they can afford the risks associated to trading.
74-89% of retail investor accounts lose money. Any trading and execution of orders mentioned on this website is carried out by and through OPCMarkets.
Merchant of Record: A Media Solutions trading as Oilprice.com